US009405637B2

a2 United States Patent 10) Patent No.: US 9,405,637 B2
Palus 45) Date of Patent: Aug. 2, 2016
(54) LOCKING/UNLOCKING CPUS TO OPERATE (56) References Cited
IN SAFETY MODE OR PERFORMANCE
MODE WITHOUT REBOOTING U.S. PATENT DOCUMENTS
(75) Inventor: Alexandre Pierre Palus, Houston, TX 4,893,233 A : /1990 Denman etal. 712/244
(US) 6,101,580 A 8/2000 Agesen etal. ... 711/132
6,754,787 B2 6/2004 Miller et al.
. 7,370,232 B2 5/2008 Safford
(73) Assignee: TEXAS INSTRUMENTS 7,747,807 B2 6/2010 Racunas et al.
INCORPORATED, Dallas, TX (US) 2002/0099933 Al* 7/2002 Nevill etal.cccc........ 712/228
2006/0026312 Al* 2/2006 Chauvel 710/23
(*) Notice: Subject to any disclaimer, the term of this 2007/0277023 Al* 11/2007 Weiberle et al. 712229
patent is extended or adjusted under 35 2011/0179255 Al* 7/2011 Pathiraneetal. 712/207
U.S.C. 154(b) by 1303 days. * cited by examiner
(21) Appl. No.: 13/008,082 Primary Examiner — William B Partridge
R ttorney, Agent, or Firm — Grego R in; Fr: R
(22) Filed: Jan. 18,2011 74) Attorney, Ag £ Gregory J. Albin; Frank D
Cimino
(65) Prior Publication Data
57 ABSTRACT
US 2012/0185628 Al Jul. 19,2012
An embodiment of the invention provides a method for
(51) Int.CL changing a multi-processor system from a performance mode
GO6F 9/30 (2006.01) to a safety mode while the system continues to run software.
GO6F 11/16 (2006.01) When an external event or exception occurs, context is
GO6F 9/38 (2006.01) switched from the performance mode to the safety mode.
(52) US.CL After context is switched, at least one pair of CPUs is syn-
CPC GO6F 11/1641 (2013.01); GOGF 9/3861 chronized to operate in the safety mode. In addition, a multi-
(2013.01); GO6F 11/1658 (2013.01); GO6F processor system may be switched form the safety mode to
11/1675 (2013.01); GOGF 2201/845 (2013.01) the performance mode while the software continues to oper-
(58) Field of Classification Search ate.

None
See application file for complete search history.

7 Claims, 3 Drawing Sheets

402~

DETECT AN EXTERNAL EVENT

A

404~

SWITCH CONTEXT FROM
PERFORMANCE MODE 10
SAFETY MODE

!

406"

SYNCHRONIZE AT LEAST
ONE PAIR OF CPUs

US 9,405,637 B2

Sheet 1 of 3

Aug. 2, 2016

U.S. Patent

(LYY YOI
I DA
811 g1 2 ZLl

,f, / \ \
1NdINO/NdN INAEINO/ NN 7 AHOWIW L AHONIIN

201

/

8N4

g1 ¥ 3HIVO

¥ da

$7 1] € 3HOVD

€ Nd3

¢ 3HIYD 771

¢ Nd3

b AHOYO 071

L AdO

/

git

N

001

/

801

N

§01

N

b0

U.S. Patent Aug. 2, 2016 Sheet 2 of 3 US 9,405,637 B2
204
/
¥
MEMORY
STACK 1 STACK 2 STACK 3
STATUS STATUS STATUS
SP3
PRIORITY PRIGRITY PRIORITY
SP2
SP | e
i\ {
~-210
212
202
- 206
CRY
Fits. 2
(PRIOR ART)
402,
DETECT AN EXTERNAL EVENT 502
7 DETECT AN EXTERNAL EVENT
SWITCH CONTEXT FROM !
404~ PERFORMANCE MODE TO SWITCH CONTEXT FROM
SAFETY MODF SAFETY MODE TO 504
T PERFORMANCE MODE
SYNCHRONIZE AT LEAST !
4{36*’/ (ONFE PAIR OF CPUs LINLGCK ALL LOCKED CPUs \5%
FIG. 4 FIG. 5

US 9,405,637 B2

Sheet 3 of 3

Aug. 2, 2016

U.S. Patent

(I3V YOIdD)
£ EIH
gl 9i¢g yig 2ig
N N / 4
Z INdIN0/ NN L NN/ NN 2 AHOWIIN L AHOWIN
Z0¢
/
8 WDm 3
g7 ¥ 3HOVD . p7e-] € IHOVO 2 IHVO 750 NN LIHOVO |\ _pae
THYINOD TYINGD i
b0 7 £ NdD Zndo < L 1dD
.\m 0gs \ ﬂ 8eg f
gie g0t 90¢ FOE
/
0os

US 9,405,637 B2

1

LOCKING/UNLOCKING CPUS TO OPERATE
IN SAFETY MODE OR PERFORMANCE
MODE WITHOUT REBOOTING

BACKGROUND

Multi-processor (i.e. multiple CPUs (Central Processing
Unit)) systems may operate in different modes. For example,
a multi-processor system may operate in a lock-step (safety)
mode or in a non-lock-step (performance) mode. Lock-step
mode is used to achieve high diagnostic ability. In lock-step
mode, one or more processors (CPUs) perform the same
operations. For example, when two processors are operating
in the lock-step mode, they are initialized to the same state
during system start-up, and they receive the same inputs (Le,
code, bus operations and asynchronous events). As a conse-
quence, during lock-step mode, the state of the two processors
is identical from clock to clock when no errors occur.

However, when an error occurs in either processor between
the states of two processors, differences in the behavior may
be detected by comparing signals at key places (e.g. data
buses and address buses) in the multi-processor system. In the
lockstep mode, the multi-processor system monitors signals
at key places and flags an error when there is a discrepancy.

In performance mode, the processors in a multi-processor
system may be used to execute a single sequence of instruc-
tions in multiple contexts (single-instruction, multiple-data
(SIMD)) or multiple sequences of instructions in multiple
contexts (multiple-instruction, multiple-data (MIMD)).
SIMD multiprocessing is well suited to parallel or vector
processing, in which a very large set of data can be divided
into parts that are individually subjected to identical but inde-
pendent operations. A single instruction stream directs the
operation of multiple CPUs to perform the same manipula-
tions simultaneously on potentially large amounts of data.

MIMD multiprocessing is suitable for a wide variety of
tasks in which completely independent and parallel execution
of instructions touching different sets of data can be put to
productive use. Processing may be divided into multiple
threads, each with its own hardware processor state, within a
single software-defined process or within multiple processes.
Insofar as a system has multiple threads awaiting dispatch
(either system or user threads), this architecture makes good
use of hardware resources.

A multi-processor system, such as a system-on-a-chip
(SOC) or an embedded system, may contain digital, analog,
mixed-signal and often radio-frequency functions, all on a
single chip substrate. An SOC or embedded system is a multi-
processor system often used to perform one or a few dedi-
cated functions. Often these dedicated functions have real-
time computing constraints where safety is an issue. For
example, an SOC or an embedded system may be used to
control the braking of an automobile.

Therefore, it is important that a multi-processor system
may be switched from a safety mode to a performance or from
a performance mode to a safety mode. When there is a
demand for data integrity, such as in the safety mode, the
multi-processor system may be switched to the safety mode.
When there is a demand for performance and data integrity is
less important, the multi-processor system may be switched
to the performance mode. When the multi-processor system
switches modes, it is important that the operating system (OS)
switch cleanly between the modes with as little time delay as
possible.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1is ablock diagram of a computer system comprising
a plurality of CPUs (central processing units), memory
devices, /O (input/output) devices and a bus. (Prior Art)

10

15

20

25

35

40

45

50

55

60

65

2

FIG. 2 is a block diagram illustrating how stacks in
memory may be used in a single CPU to multi-task. (Prior
Art)

FIG. 3 is a block diagram of a computer system comprising
a plurality of CPUs (central processing units), memory
devices, I/O (input/output) devices, compare units, and a bus.
(Prior Art)

FIG. 4 is a flow chart illustrating an embodiment of a
method of changing from a performance mode to a safety
mode in a multi-processor system.

FIG. 5 is a flow chart illustrating an embodiment of a
method of changing from a safety mode to a performance
mode in a multi-processor system.

DETAILED DESCRIPTION

The drawings and description, in general, disclose a
method and system of changing from a performance mode to
a safety mode and from a safety mode to a performance mode
in a multi-processor system while software continues to oper-
ate. In one embodiment, an external event or exception causes
the multi-processor system to change from a performance
mode to a safety mode. After the external event or exception
occurs, the context of the processors (CPUs) in the perfor-
mance mode is saved in memory and the context of the safety
mode is loaded in two or more of the processors.

Next two or more processors are synchronized in order to
operate in the safety (lock-step) mode. Part of the process of
synchronizing two or more processors includes suspending
execution of the processors, resetting parts of each processor
(e.g. an PFU (prefetch unit) or an RTU (return stack unit)),
and resetting a compare unit. After the processors are syn-
chronized, the processors are released and they are now in
lock-step.

FIG.11s ablock diagram of a computer system comprising
a plurality of CPUs (central processing units), memory
devices, I/O (input/output) devices and a bus. In this example,
four processors, CPU1-CPU4 are connected to bus 102. In
addition, two memories, 112 and 114, are connected to bus
102 along with two I/O devices 116 and 118. Each of the
processors, CPU1-CPU4, has a cache, CACHE1-CACHE4
respectively.

Any of the processors, 104-110, may write and read data
from the memories 112 and 114 and the I/O devices 116 and
118. In a multi-processor system 100 as shown in FIG. 1, the
processors, 104-110, may be used to execute a single
sequence of instructions in multiple contexts, multiple
sequences of instructions in a single context, used for redun-
dancy in fail-safe systems, or multiple sequences of instruc-
tions in multiple contexts.

A multi-processor system 100 may multi-task. Multi-task-
ing is a method by which multiple tasks, also known as
processes, share common processing resources such as CPUs
and memory. A process is an instance of a computer program
that is being executed. It contains the program code and its
current activity. Depending on the operating system (OS), a
process may be made up of multiple threads of execution that
execute instructions concurrently. In the case of a computer
with a single CPU, only one task is said to be running at any
point in time, meaning that the CPU is actively executing
instructions for that task.

Multitasking schedules which task may be the one running
at any given time, and when another waiting task gets a turn.
Scheduling refers to the way processes are assigned to run on
the available CPUs, since there are typically many more
processes running than there are available CPUs. This assign-
ment is carried out by software known as a scheduler and

US 9,405,637 B2

3

dispatcher. The act of reassigning a CPU from one task to
another one is called a context switch.

A context switch is the process of storing and restoring the
state (context) of a CPU so that execution can be resumed
from the same point at a later time. Context switches are
usually computationally intensive and much of the design of
operating systems is to optimize the use of context switches.
A context switch can mean a register context switch, a task
context switch, a thread context switch, or a process context
switch. What constitutes the context is determined by the
processor and the operating system. Switching from one pro-
cess to another requires a certain amount of time for doing the
administration (i.e. saving and loading registers and memory
maps, updating various tables and list etc.).

There are at least two situations where a context switch
occurs. For example, a context switch may occur during mul-
titasking as described above or during interrupt handling.
Most modern computer architectures are interrupt driven. An
interrupt is an asynchronous signal indicating the need for
attention or a synchronous event in software indicating the
need for a change in execution. A hardware interrupt causes
the processor to save its state of execution and begin execu-
tion of an interrupt handler. Software interrupts are usually
implemented as instructions in the instruction set, which
cause a context switch to an interrupt handler similar to a
hardware interrupt. An act of interrupting is referred to as an
interrupt request (IRQ).

As mentioned above, the state of the process (context) may
include all the registers that the process may be using, espe-
cially the program counter, plus any other operating system
specific data that may be necessary. This data is usually stored
in a data structure called a process control block (PCB), or a
switchframe. The PCBs are sometimes stored upon a per-
process stack in memory or there may be some specific oper-
ating system defined data structure for this information.

A typical stack is an area of computer memory with a fixed
origin and a variable size. Initially the size of the stack is zero.
A stack pointer (SP), usually in the form of a hardware reg-
ister, points to the most recently referenced location on the
stack; when the stack has a size of zero, the stack pointer
points to the origin of the stack. A stack usually has two
operations: a push operation in which a data item is placed at
the location pointed to by a stack pointer, and the address in
the stack pointer is adjusted by the size of the data item and a
push or pop operation, in which a data item is placed at the
location pointed to by the stack pointer, and the address in the
stack pointer adjusted by the size of the data item.

There are many variations on the basic principle of stack
operations. However, every stack usually has a fixed location
in memory at which it begins. As data items are added to the
stack, the stack pointer is displaced to indicate the current
extent of the stack, which expands away from the origin.

FIG. 2 is a block diagram illustrating how stacks in
memory may be used with a single CPU to multi-task. In this
example, a system 200 is configured to multi-task. The con-
text of three tasks, taskl, task2, task3, is stored in stacks 1-3
respectively. Each stack, 1-3, has a least a stack pointer (SP1,
SP2, and SP3), status information, and priority information.
In this example, the information in stack2 is transferred to the
CPU registers 206. After the information is transferred to the
CPU registers 206, the CPU 202 works on task2. When an
interrupt occurs, the context in the CPU registers 206 is trans-
ferred 210 back to stack2 in memory 204 and the context in
stackl, for example, may be transferred 212 to the CPU
registers 206. After the context in stackl is transferred 212 to
CPU registers 206, the CPU 202 operates on taskl.

10

15

20

25

30

35

40

45

50

55

60

65

4

FIG. 3 is a block diagram of a computer system comprising
a plurality of CPUs (central processing units), memory
devices, I/O (input/output) devices, compare units, and a bus.
In this example, four processors, 304-310 are connected to
bus 302. In addition, two memories, 312 and 314, are con-
nected to bus 302 along with two 1/O devices 316 and 318.
Each ofthe processors, 304-310, has a cache, 320-326 respec-
tively. Compare unit 328 may be used to compare the output
of CPU1 and CPU2 when CPU1 and CPU2 are operating in
safety mode (lock-step). Compare unit 330 may be used to
compare the output of CPU3 and CPU4 when CPU3 and
CPU4 are operating in safety mode (lock-step).

Any of the processors, 304-310, may write and read data
from the memories 312 and 314 and the I/O devices 316 and
318. In a multi-processor system 300 as shown in FIG. 3, the
processors may be used to execute a single sequence of
instructions in multiple contexts, used for redundancy in
safety mode systems, or multiple sequences of instructions in
multiple contexts.

Data from a cache in a particular CPU may be used in
another CPU using cache-forwarding. For example, if CPU1
needs the data from CPU4’s cache and CPU3 has a copy of
that data, then CPU3 will send that data to CPU1 in response
to a snoop it received and CPU4 will counter check that data
in the next cycle. This results in high speed and efficient data
transfer between the processors. Cache-forwarding is also
useful during operation in the safety mode.

FIG. 4 is a flow chart illustrating an embodiment of a
method of changing from a performance mode to a safety
mode in a multi-processor system. In this embodiment, a
multi-processor system detects when an external event or
exception occurs in step 402. For example, the exception may
be an interrupt. An interrupt may be a hardware or a software
interrupt. A software interrupt is an interrupt generated within
a processor by executing an instruction. Software interrupts
are often used to implement system calls because they imple-
ment a subroutine call with a CPU ring change.

The interrupt may also be an IRQ (interrupt request), an
NMI (non-maskable interrupt) or an IPI (inter-processor
interrupt). An NMI is a hardware interrupt that lacks an asso-
ciated bit-mask, so that it can never be ignored. NMIs are
often used for timers, especially watchdog timers. An inter-
processor interrupt (IPI) is a special case that is generated by
one processor to interrupt another processor in a multi-pro-
cessor system.

During step 404, context is switched from the performance
mode to the safety mode. A context switch is the process of
storing and restoring the state (context) of a CPU so that
execution can be resumed from the same point at a later time.
In this embodiment, the performance mode context of each
CPU is stored in a memory location in the multi-processor
system. The memory location may be a stack. The perfor-
mance mode context also includes a stack pointer for each
CPU.

Next, the safety mode context is loaded from memory in
the multi-processor system. The safety mode context may be
loaded from a shack. The safety mode context is loaded into
at least two CPUs. The safety mode may also be run with
more than two CPUs having the same context. The same
software is run on all the CPUs that are running in lock-step.

During synchronization, step 406, of the CPUs running in
the safety mode, the execution of each CPU is suspended
while parts of each CPU is reset. For example, the PFU
(pre-fetch unit) and the RTU (return stack unit) may be reset.
Synchronization also includes resetting a compare unit,
engaging the compare unit and a cache from a first CPU with
a second CPU, and finally starting execution of each CPU

US 9,405,637 B2

5
used in safety mode. During the method shown in FIG. 4, the
multi-processor system continued to operate without reboo-
ting the system.

FIG. 5 is a flow chart illustrating an embodiment of a
method of changing from a safety mode to a performance
mode in a multi-processor system. In this embodiment, a
multi-processor system detects when an external event or
exception occurs in step 502. For example, the exception may
be an interrupt. An interrupt may be a hardware or a software
interrupt. The interrupt may also be an IRQ (interrupt
request), an NMI (non-maskable interrupt) or an IPI (inter-
processor interrupt).

During step 504, context is switched from the safety mode
to the performance mode. In this embodiment, the safety
mode context of each CPU is stored in a memory location in
the multi-processor system. The memory location may be a
shack. The safety mode context also includes a stack pointer
for each CPU. Next, the performance mode context is loaded
from memory in the multi-processor system. In one embodi-
ment of the invention, the location of the performance mode
context may be found by looking in each ID (identification)
register of each CPU. After the location of each performance
mode context is found, a performance mode context is loaded
into each CPU. The performance mode context may be loaded
from a shack.

During step 506, locked CPUs are unlocked from each
other and the compare unit is notified to stop lock-step execu-
tion. After disengaging the compare unit, cache-forwarding is
disengaged. At this point the multi-processor system is oper-
ating in the performance mode. During the method shown in
FIG. 5, the multi-processor system continued to operate with-
out rebooting the system.

The foregoing description has been presented for purposes
of'illustration and description. It is not intended to be exhaus-
tive or to limit the invention to the precise form disclosed, and
other modifications and variations may be possible in light of
the above teachings. The embodiments were chosen and
described in order to best explain the applicable principles
and their practical application to thereby enable others skilled
in the art to best utilize various embodiments and various
modifications as are suited to the particular use contemplated.
Itis intended that the appended claims be construed to include
other alternative embodiments except insofar as limited by
the prior art.

5

40

6

What is claimed is:

1. A method of changing from a performance mode to a
safety mode in a multi-processor system that includes a first
central processing unit (CPU) and a second CPU, the method
comprising:

detecting an external event;

saving a performance mode context of the first CPU in a

memory;

saving a performance mode context of the second CPU in

the memory;

loading a safety mode context from the memory into the

first CPU and the second CPU; and

synchronizing the first and second CPUs, wherein syn-

chronizing the first and second CPUs includes resetting
parts of each of the first and second CPUs without reboo-
ting the multi-processor system,

wherein software continues to operate on the multi-proces-

sor system.

2. The method of claim 1 wherein the external event is an
interrupt.

3. The method of claim 2 wherein the interrupt is selected
from a group consisting of an IRQ (interrupt request), an NMI
(non-maskable interrupt) and an IPI (inter-processor inter-
rupt).

4. The method of claim 1 wherein switching context further
comprises:

saving a performance mode stack pointer for each of the

first and second CPUs.

5. The method of claim 1 wherein the switching context
further comprises:

starting execution of a same software on each of the first

and second CPUs.

6. The method of claim 1 wherein synchronizing the first
and second CPUs further includes:

suspending execution of each of the first and second CPUs;

resetting a compare unit;

engaging the compare unit and a cache from the first CPU

with the second CPU; and

starting execution of each of the first and second CPUs.

7.The method of claim 1 wherein resetting the parts of each
of'the first and second CPUs includes resetting at least one of
a pre-fetch unit (PFU) or a return stack unit (RTU) in each of
the first and second CPUs without rebooting the multi-pro-
cessor system.

